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This paper contains the solution and analysis of a number of problems in
the theory of gaseous jets., The first section discusses the question of

a converging gaseous jet; the second considers flow past a plate under
the assumption that in front of the plate there exists a region of gas at
zero velocity. In spite of their apparent diversity, these problems have
a common property, namely, that the first problem is obtained from the
well known problem of the jet flow of a gas from an infinite vessel by
means of substituting the point of zero velocity at infinity by a whole
unbounded region of stagnation; a similar stagnation region in the second
problem is considered to be in front of the plate.

The third section contains the solutions of a number of problems on
the jet flow of a gas which were studied earlier by Zhukovskii for the
case of an incompressible fluid. For the solutions of these problems we
make use of new particular integrals of Chaplygin's equation

I. The problem of a contracting gaseous jet

1. Let us consider a stream of gas, flowing with velocity V,; let us
assume that the width of this stream, and also the density of the gas,
are known. Let us assume further that, in its motion, the gas encounters
two straight walls, symmetrically disposed relative to its direction of
motion, and including between them an angle 2A, and that a jet with free
surfaces issues from the orifice formed by these two walls. Our problem
consists in determining the entire motion of the gas by means of the
methods described by Chaplygin [ 1] in his paper On gaseous jets. In what
follows we adopt the notation of that paper for all the principal quanti-
‘ties.

Let us assume that the gas flowing from infinity has a velocity
parallel to the positive direction of the x-axis; this axis is the line
of symmetry of the two guiding walls, and the origin of coordinates 1is
taken at the point of intersection of this axis with the line joining the
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ends of the walls, from which the gas jet emerges. Let us denote by V,

the constant velocn:y of the stream at infinity before its encounter uth
the walls. This is also the velocity of the gas particles on those stream-
lines along which these particles move before striking the walls.* Let

us, moreover, denote by V, the velocity of the gas particles along the two
streamlines issuing from the inclined walls and bounding the jet directed
along the positive axis of x.

Adopting Chaplygin’'s notation, we set
Ve Vet

=g = 20

Let us denote by Py the density of the incident gas, and by p, the
density of the gas in the remote parts of the emergent jet. If we call
the width of the incident stream 21,, and the width of the emergent jet
at infinity 21 o+ we shall then have

phV1 = palaVs (1.1)
From Bernoulli's equation, written in the form

p=po(1—1)P

we obtain the two relations:
. 1 —=\8 pa __ (1—Ta\P
pP=p (1—_—,;;) ) i (1 __11) (1.2)
If the axis of x delineates the zero value of the stream function i,

then along the streunline A’B’C’D’ the function ¢ is equal to a constant

value ¢ = P ly /po > 0, and along the streamline ABCD it 1is equal to
the constant vaiue - q (F1g. 1).
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Fig. 1.

The function ¢/, considered as a function of r and the angle of incli-
nation @ of the gas particle velocity to the axis of x, satisfies the

* Translator’s Note: This refers to the two free streamlines A’B’ and

AB inside the vessel. These free streamlines separate the moving stream
from the stagnant fluid which fills the remainder of the vessel.
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following equation:

9 f 2t op) , 1—@B+ 1T
F{(1—-c)"3f} 21(1_1)a+1ae=—0 (1.3)

We find the integral of this equation subject to the relevant boundary
conditions for those values of @ and r which correspond to the lower half
of the stream between ABCD and the axis of x; here the angle 6 varies
from zero to A, and the variable r varies fromr, to r,. The boundary con-
ditions for the determination of the function l/l(é, 7) are written thus

(Fig. 2):
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Fig. 2. Fig. 3.

when t=n and for0 <<6<A the function ¢=—gqg

when 8 =% ana form<t<Ta the function ¢=-~—y¢ (1.4)
when t=1 and fora >0>0 the function ¢=—gq

when 6 =0 and fortma,>t>m " the function =20

Together with the function y»(6, r) we will determine the function
¥(9, r), the integral of equation (1.3), connected with the function
(0, r) by the relation

¢=1(¥—9) (1.5)

The new function ¥ must satisfy the following boundary conditions
(Fig. 3):
when T=r; and for0 <6< ) the function ¥ =—(2—09)
when 6 =2 and fort; <t< <z the function V¥ =0
when T= 1 and forx >06>0 the function ¥ =—(A—9)
when 6 =0 and fort; >t >71 the function ¥ =0

To determine the function ¥ we find particular solutions of equation
(1.3). This equation has a particular solution of the following form:

Wa (8, 1) = 2, (¢) sin "T"e (1.6)

wheren is any integer greater than or equal to unity. The function Wn(G,r)
evidently satisfies the condition

Yo (0, 7) = ¥a(h 1) =0
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The function z (r) is the general integral of the equation

d{ 2t dzn}_ﬂi—-(23+i)1:

dr {1 — B dT 2 2¢(1 —q)pH =0 (4.7

Let us now construct a series of particular solutions of equation (1.7).
Let us, however, first introduce the following notation: we will denote
by z_,(r) the integral of equation (1.7) satisfying the conditions

dzm (‘t 1)
dt

and by z ,(r) we will denote the integral of equation (1.7) satisfying
the conditions

Zn (tl) =0, =1

2, (72)
() =0, 2ot

With this notation we can write
2, (t) = CraZm (t) + Cng Zng (7)
where C"1 and an are two arbitrary constants.

Let us now expand the function ¥(@, r) in the series

¥ (0, 9) = 3 [Cus Zn1 (x) + Cra 2y (1)) sin 20

n=1

and determine the constants C ,, C , from the following boundary conditions:
¥ n)=—(0N—0) for 0O Y, t)=—(—0 for 0o
Applying the theory of Fourier series, we obtain

2x 1 22 1
C = — ————— C T e —— —
" TRz, (1)’ ™ TN 3, (T2)

whence we find that

¥, =23 L[mO  mO g, m,

L on Lz, (ta) 2., (7) A

Returning to formula (1.5), we find the stream function:

hd nl("") nz(‘c) . ®™n
‘P'_" B 2 et m]smﬂ} (1.8)

Using the fonnulas

acp 2t dp 1 —(2B4 )Ty

5 (1—n)® ' ot 2t (1 — 7)P+1 6

we then find an expression for the velocity potential:
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o (1—(@B+1)x e B | I wm
q M_S 2t(1 —m)PHt a (1—1)9 Z n? [ Zpy {T2) + zmm)]c"s 50 (1.9)

2, With the help of formulas (1.8) and (1.9), let us find a number of
geometrical quantities relating to the dimensions and shape of the stream.

First of all, let us calculate the distance b of the point B or B’
from the axis of the stream.

We have the general fornula:
dy = d¢+ dd

Applying this to the streamlme ¥=-gq from the point 4 to the point
B, we obtain

%y oo 0 — sin® 49 m(‘h) 25 () g
W= B = Vm 2 [m iy in S0

Let us integrate this equation from the point A to the point B; taking
into consideration the formula

=(1— Tl)a V 2ax, 4,

we obtain

zn’] (Tl) z-u’g (Tl)]

z, (72} ' oz, (T1)

(1.10)

-]
f; —b — s (_)ﬂ
— = 4rhsink H) T {
n==i
Let us now calculate the difference between the distances of the
points B and C from the axis of the stream; denoting the distance of the
point C from the axis of the stream by ¢, we get

8y o9
b_c-g ‘Bp ard

T

Making use of the formulas

§‘1~—(2B+1)1 d= =_[ 1 ]‘-
J 2t(1—7)fHViar (1 — 0V 2az Ie

A2 d v d2,] dv (v 1 2y, (7) T
(1 “’Wx E[(i._,)a Z?]Vz—g;»" [(1_-.)BV2T1 T2 (i—'v)"V‘ZE]r.
and expanding (1.9), we obtain the follovring expression for b~ ¢:

1 Ini (t2) 1 _
b—e=—gq [———————(1 oV mT] + 4ryly hsin A 2 v [‘m = -+ ™ (n)}
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1 Zng ("-'l)] (1.11)

o _ ="
—4ul)sin) Y s [ e T, @
n=1
Let us now develop a fornula for the determination of the width of the
jet going off to infinity. We have the following relation:

0
dy 0
c—l= a—z = do
A
Substituting therein for dy /@¢ its value of sin 8/y/2ar, and for

d¢/d 6 its value, found from formula (1.9), we obtain

c—1ly e (= [ 2 (7a)
= o dcylhsin 3 ot [zm o+ ] (1.12)
Nwa

We notice that if we combine the formulas (1.10), (1.11) and (1.12),
then after cancelling similar terms we obtain an identity. Hence it
follows, as indeed it should, that there is only one formula to determine
lz, namely,

h=(=2) Y/ 2y C43)

Since

=PV = — (28 4+ 1)1 >0

and since for subsonic flows s, andr, < (28 + 1)-%, then 1, < 1.

3. The formulas of the two foregoing subsections represent the complete
formal solution of the. specified problem on gaseous jets. The solution
obtained, however, is in a very abstruse form, and accordingly we now
turn to the deduction of simple relations which will enable us to deter-
mine the required dimensions, under the assumption that the velocities
V, and V, are close to one another. Under this assumption the formulas
(1.10). %1.11) and (1.12) can be reduced to a very simple form, by
employing the transformations applied by Poincare [2 ] to the study of
the propagation of radio waves.

Let us consider the following functions of the variable index n:

.
Zyy (T1)

an (1'1)

1
/1(")=ma Ja(n) =

an (Tz)

1
= = Em

We notice that, by virtue of the relation
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1-—1,)33

Zn (12) = " 2ng (11) (1 —1)/ T2

we can express the function f,(n) by means of the function f, (n) accord-
ing to the formula

T — 1\
L) = —2 (=2 Am)
Since the parameter n’ enters the equation (1.7) linearly, and the de-
termination of the functions z 1(r) and z_,(r) obeys specially determined
initial conditions, then accoramg to one of Poincare’s theorems [3 ] the
functions z,,(r) and z,,(r) are entire functions of the variable n. Hence
it follows t}xat the function f,(n), f,(n), f;(n) and f,(n) are meromorphic
functions of the complex variable n. &nr first problem consists in ex-
panding these functions in series as regards the principal parts.

Let us first consider the function f,(n) and find its poles. The affix
n. of a pole is a value of n for which the function zn1('2) vanishes; but
according to its construction the function z ,(r) also vanishes whenr =r .
Consequently,nj is a number such that, simultaneously,

Znp1 () =0, Znj1 (x2) =0 (1.14)

i.e. n., or rather 72n.2/\?, are the fundamental numbers of the diffe-
rential equation (1.7) for the boundary conditions (1.14). Since the
variable r does not exceed 1/(2 8 + 1), then the fundamental number
7?n.2/A? can only be a negative number. Let us introduce the real number
m. by setting n. = im.; then rrznjz/)\z == ﬂznjzAz, where the index j

take the values'+ 1, :{ 2, £ 3, ... We observe that L T

For the further study of the function f, (n) it is convenient to trans-
form equation (1.7) into a new form.

Let us introduce, instead of z, a new unknown function u, by setting
u=F(7)z
and in place of r a new independent variable v by the formula
T

_(Vi=(@2p+ D~ (= @B 41T
V—S “Vi—=< dz F(ﬂ—[(i—“')m'“]

T

The function u(v) will satisfy the equation

(ot Gr)a=0 (1.15)

dv: dv?

1 dF _ B@B+1) T B@B+DNT+2B+DT—4 .
FTad - § I—= T—@B+Dp ’ =

where

F dv
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Let us consider the solution of equation (1.15) for large [p|. Accord-
ing to a well-known theorem in the theory of differential operators [4],
equation (1.15) has in each quadrant of the plane of the complex varisble
p two fundamental integrals 2{1) () and u{2) (), which, for large |p| and
for v lying in the region of regularity of the function (1/F)(d*F/dv?),
are represented by the following asymptotic formulas:

wo=eliro(b] wo-rfieo(})]

Hence it follows that, as the parameter p varies in each of the
specified quadrants, there exist fundamental integrals 2(1) and 2t
which the following asymptotic formulas hold:

20 (@) = % & {1 + 0(%)] , 2 (x) = 'ﬁ"}(‘r__) e [1 + 0(%_)}

This shows that in each of the specified quadrants there exist, for
large |p| the following asymptotic representations of the integral zni(r)
and its derivative:

2) for

PLA e dy
Zny ('C) = PglF (Tl) ¥ zﬂ‘I (t) = gl—;‘_ (Tl) 3‘-7 (1.16)
where
=2V1—(25+1)~r1= 2 (é;\
O VienF(y  F\dr

Sy
Similarly, for the integral z,,(r) we have

&P =) _ p—p (v—V) P (V) . g—pl YY) gy

pg‘aF (Tg) , z‘nz ('C) = g;)'": (Tg} a—t (1 N 1 7)

Zng (T) =

where

_2VI—@B+ D7 _ 2 (dv
tVi=<

g2 12V1—~12F(Tz) o F(TE) dv

Ts
{dv - Vi—(@3+ )=
4 )‘tg’ v S — i dt

Hence we obtain the following asymptotic representations of the fune-
tions f,(n), f,(n), f5(n), f,(n) for large |p | or for large |n| in all
quadrants:

2VI— (BB + 1) e T—@2B+ ) e + ¢
n)— T 7 ys ny— e — 7 ;
Him) oVi—m PP f+(m) wVi—n e — e
VIZ(@ZB+ D e + e 2VI—(@B+ D e
n) = i . - n) = LI ;
Is(n) 2wV i—1, e?V — g fa(m) wVi—x PV .

Starting from these formulas, we can establish the convergence of the
series which appear in formulas (1.10), (1.11), and (1.12); using form-
ulas (1.16) and (1.17), we can also demonscrate the convergence of the
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series (1.8) and (1.9), which define the stream function and the velocity
potential.

Let us now carry out the expansion of the functions f,(n), f,(n),
f3(n), f,(n) in series as regards the principal parts. We will start with
the function £, (n).

The expansion of this function in series as regards the principal
parts is

hm =t S (=, )b

jm—oo

where the real number {j is determined by the formula

1 —i [azm (Tz)
N on Jn-inw

We observe that f;; = - fj.

Let us rewrite the foregoing expression for fl(n) in the form:

hi(n)= zl(,2)+2z,;—22, n2+m2 (1.18)

j=1

Using the relation between the functions f,(n) and f,(n), we can also
write down the expansion as regards the principal parts of the function

fy(n):

ZQZ 2)

fa(n) = 12(11)+22m 22 n‘—i—m2 (1.19)
i=1 i=1
where . o
T — T2
wj=— %(1—11.) &

Now let us expand the function fz(n) in series as regards the principal
parts. Taking into consideration the asymptotic formula for fz(n) we
find after some minor transformations that

zo72(71) g n; P
R = T2, 2‘\-{m+mz (1.20)
j= j=
where )
. _ n9 T o
i = [(a/an)zm(n)]n_,-m,.' Ty =

Similarly for the function fa(n) we obtain this expansion:

fain) = 2! +22;_2>J n2+mz (1.21)

291 (Tn)
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*\ere '
) zn1{Ta)
5= 7m P ]n-"mj
4, Let us now take the formulas (1.10) and (1.12) and transform them
into a new form, replacing therein the functions f, (n), f,(n), fa(n),
f,(n) by their expansions (1.18), (1.19), (1.20), and (1.31). We obtain
the following results:
ot )" 1 Zgy (1) o & 1
Z s h(n) =5 (T—— cosec )\) {zm o) +2a2H 2 P nﬂm_.z} —
n=1 jm1 7 7

. haig E 1 1_ Tm;
2 m; A+ n"mf( sh nmj)
=1

Now replacing f]. in the right-hand side successively by I 4 I and
w;, we shall have the new expressions respectively for

o o »
"2;"1 1:21(1;—3_ A2 fz (n)’ n>=}1 nzn(,;_—-)- e /s (n)’ ﬂgl ;:‘.2‘,5;——_13\—2 fa (n)

Let us return now to formulas (1.10) and (1.12) and substitute in them
the expressions obtained for the sums under consideration. Bearing in
mind the equations

z(y; (1) 20; (m1) _ Zm' (12) zo,; ()
Zo1 (T2) z(v) 7 Zg(Te) 00 (1)
we obtain
= ' fephsin h(xS, — hese h Sy) (1.22)
P2l gensinh (1S, — M ese AS) (1.23)
u: Cj + w; o?\ ¢ jto; 1
So= 3 ey, 5= By (020)
_ 3 & +7; o Etw 1
Sa = 52‘1 (A =*mj*) shwm;’ Se= j§1 m; AT wim (1.25)

5. Formulas (1.22) and (1.23) can be reduced to an exceptionally
simple form in the case when the numbers r, and r, are close to one an-
other. In order to obtain these new formnulas let us take equation (1.15)
and rewrite it in the following way, replacing n by inm :
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du nim3 _ 1 d3F =0
avt (m T"dvﬂ'> =

Let us introduce in place of v the new independent variable

T
= —v

v’
We observe that when the difference between r, and r, is not large the

parameter v’ is very small. The last differentiai equation is rewritten
in temms of the variable ¢ as follows:

Zle-w oo (-F)  om

Let us calculate the integral of this equation under the following
conditions:
d
u (0) = O’ (d_z)i-o =1

The original variable r can be expressed in terms of the 'variable ¢
in the form of the following series in powers of v’£/m:

V=T Ve
e E T

By virtue of this we obtain

1 &F , , 1 doF
=t taytt oyt (ao=[ ]0)

F dv fvem
Hence we can rewrite equation (1.26) in the following way:
Ao+ s = Y [ag vk + a4 e () (1.27)
We shall seek a solution of this equation in the form of a series in

powers of the parameter v°; we set

u () = o (8) + vty (8) + v2us (§) + Vius () + - .- (1.28)

In order to detemmine the co-efficients u, &), uy (£), ... we have the
following system of equations:

du d*u du a
EgTo-I—szuO:O’ -¢1_52-1+S2u1=0’ FE.TZ+32112=;—2-UO

d'u. 2 1 d'zu¢ 2 1 2

FE + sfuy = — (a,fuo + aou), P + sPuy = — (a2 + a,f+ asf*uo), -

This system of equations has to be integrated under the following con-
ditions:

2, (0)=0, u,(0)=0, u,(0)=0, us(0)=0, u(0)=0,...
w @) =1, ' ©0)=1, u/(0)=0, us(0)=0, u/(0)=0,...

Integrating the system of equations so obtained under these conditions,
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we have
uo (§) = —1; sinsg, u; () =0, uy(t)=— —2;:% [st cos sE — sin s&]
us (k) = — % [s& cos st — sin st]

u  (§) = 8?14?(2"2“2 — a}) ® sin sE— 6—:—:87 £ cos st +

1 1 )
+ Brtst (2n%ay — 3a,?) & cos st — ) (2n2a; — 3a?) su; s§

In this way the series (1.28) is constructed. Let us find the number
s from the condition that the solution (1.28) of equation (1.26) shall
vanish when & = 7.

The equation for the determination of s is written thus: (1.29)
sin ns — =2 [rs cos ns — sin ns]'? — N7 [rs cos s — sin ws] v'3 4+ =0
2mg? 4m2s? e

When v’ = 0 this equation has the solution s = j, where j is an arbi-
trary integer. The partial derivative with respect to s of the left-hand
side of this equation differs from zero when v’ = 0 and s = j; consequently,
equation (1.29) has a holomorphic solution when v’ & 0; this solution can
be represented up to and including second degree terms in v* by the
series:

S= 4 gt (1.30)

On the basis of the foregoing calculations, we can write down u({) in
explicit form thus:

Un (£) = is sin s — 2—%’,'?, (stcos st —sinsE)vi4- ... (1.31)

Let us take equation (1.26) once again and find the integral of it
which satisfies the conditions

du
u(ﬁ):o, EE(R)=1
Let us set
u(§) = uo(§) + Yu, (§) + v B) + ... (1.32)

In order to determine the new functions U, Uy, Upys ooo WE shall have
the previous equations, but the boundary conditions are different, namely:

ug (r) =0, u,(r) =0, uy (r)=0,...
uy' () =1, u,’ (n)= 0, uy () =0,...

Under these conditions the new solution of equation (1.26) can be
constructed in the form of the following series:
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Ung (§) = —i_— sin s (£ — m)— M,s, 53515 (§—m) cos s (§—n)—sins(§—n)v2+... (1.33)

We need to have the functions z_, and z n2* These functions are connected
with the functions u , and u ,, which are given respectively by formulas
(1.31) and (1.33) and satisfy the boundary conditions, by the relations

I () = h(0) oy s I () =h(w) i RO =F@) I (1.3

Hence, using formulas (1.30), (1.31) and the relation

§ = i ad
- 21

we obtain the following result:

02,0 (8) v h(my) { sEcossE —sinsE

an  m F (1) P

z,,zﬁ [(8 — s2¢2) sin st — 3s& cos sE] v'2 -+ . } (_ %_

Now, setting & = 7 and replacing s by the expression (1.30), we obtain

0z, (72) iv? h{t) = 3a, v'2
[T]n—m, = (=5 F(Tlg)"f{1 + g -5t } (1.35)

Making use of the second formula (1.33), we find by similar manipula-
tions that

02, (T1) . L V2 R(T) ® [ 3ay v/
[ on ]ﬂ~imj = (=) 2am F (1) _]—l + 5 2m?2 12 +- } (1.36)

The formulas (1.35) and (1.36) so obtained make it possible to find
the numbers 'fj’ 7 {., ., introduced in subsection 3. We have

it
= S i
1= — ot i lt— i |
Ciz%:((;;){i_%v?z*“}
o= — 2Py = (o BLIE S )

6. Let us now use these expressions to evaluate formulas (1.22) and
(1.23). First of all we find the sum of the series S, for small v*. We

have .

Z E; 1 _ ¥ F(m)f,_ T(128,+1) N
“m; ANtrim® T 48Ah(m) \ 240 T
oo
z_ﬂl_ 1 __v_’_F('rl)i 12ao+1,2+

m. A%+ nzm]-’ - 2402 h(Ty) 60
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Hence

. v F(t) , 1 F(w) 1200 +1 v® JF(t) , 7 F(m)
S“"—znz{h(-c:)‘l“"z‘h(xf)}‘*‘ 240-60 '?{h(111)+ h(-rl)}+ - (a)

The expression for the sum of the series S,, as determined by formula
(1.24) for small v*, has the following form:

v F (%) 1 F(mi) 120,41 v'3 |F (12 7 F(m)
Si= plrd 4 p o)ttt 2 [Te) LI @

If the number v’ is small, as we are assuming, then the infinite sums

S, and S;, determined by formulas (1.24) and (1.25), are significantly
smaller than the sums S, and §,.

Therefore, substituting in formulas (1.22) and (1.23) the expressions

(a) and (b) in place of S, and S, and neglecting the terms containing
the sums S1 and SB’ we obtain

c—ly TV [F (1) 1 Fi) 12a, + 1 , jF(‘rz) 7 F ()

I, 6 {h('ro) + hm)} S0 2 & (12 +3 h(rz)}+"'
h—b _ v [F(m) 1 F (1) 1200 +1 .. (F(71) 7 F(7T2)

ll - T {h (Tl) + 2 h (T])} 360 Tl : {h (‘fl) + 8 h (T])} +

Bearing in mind the value of the function h(r), we can transform these
two formulas into the following form:

(1.37)

c—la _ v 4 F(t)] 1 412 , T F(m) Vi@ + D
= ) e [ s ) o) Vi—n

L—b v 1 F(t)] 1+ 120 , 7 F (7o) V1—(28 + )
i L ] R L IR Vi,

Let us take as our fundamental data in this problem the quantities
74 li» ¢; then from formulas (1.13) and (1.37) we can determine r,, I,
and b. If we know the value of the speed of sound in the inflowing gas,
then by the same token we have the value of the parameter a, and can
therefore determine the velocity of the gas issuing from the orifice.

If in formulas (1.37) we set 3= 0, then we obtain the formulas relat-
ing to incompressible fluid.

In this case we have F(r) = 1, a, = 0 and the foregoing formulas
assume the following form

These two equations express Zhukovskii’'s theorem [6 ]:
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ll—b C—lg
I iz

It must be pointed out that this theorem is valid for incompressible
fluid for arbitrary Ty and T and in this general form it cen be obtained
from the complete formulas (1.10) and (1.12).

II. The pressure of a gaseous stream on a flat plate

7. The method described in the previous section can be used to solve
the problem of a jet flowing past a flat plate under the assumption that
the point of zero velocity, occurring at the plate, is replaced by a
wedge- shaped region of stagnant fluid [7].

Accordingly, let us assume that a stream of gas, having a velocity at
infinity of V, and a width of 2L, impinges on a plate of length 21, dis-
posed symnet.rlcally relative to the gas stream. Let us further assume
that the stream separates from the ends of the plate with free stream-
lines, and that it also forms, at the middle of the plate, a stagnant
region along the curvilinear boundaries of which the particle velocity
of the gas is constant and equal to V,. This stagnant region replaces the
point of zero velocity which usually occurs at the centre of the plate.
Our problem consists in det.ermmmg the pressure of the stream on the
plate and in finding the various geometrical quantities connected with
the flow pattern under consideration.

// 1
¢l / - 1¢ FE_ D
T TAC 24 w=4 iy-ﬂ
p=0 0 z i 7
E\ ' "= ] ,’g
¢ ]
\mﬂ' 8 ¢
¢ \\\\\\\ g % ’”ga l 1449
5 1o
(-]
2

Pig. 4. Pig. 5.

In Fig. 4 the streamline GF and G'F" are symnetncally disposed re-
lative to the axis Ox and enclose the whole moving mass of gas; the
streamlines DE and D’E’ spring from the ends D and D of the plate; the
parts BC and BC’ of the complete streamlines A BCDE and A B C°D’E’ re-
place the point of zero velocity. On the streamlines DE and D’E’ the
velocity of flow is constant and equal to V,; on the streamlines BC,
BC’, the velocity is likewise constant and equal toV, < V,.

Let the streamline A BCDE correspond to the zero value of the stream
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function ¢(r, 8), and the streamline GF correspond to the value of the
stream function equal to Q> 0,

Let us denote by 6, the angle which is formed by the direction of the
divided jet with the axls of z; this quantity is unknown. In Fig. 5, re-
presenting the plane of Chaplygin’'s variables, the flow occupies t.he
region ABCDEFGA, inside which we require the integral of the equation

9 2 d 1—@B+1)7 3% _
{(1 )8 61]+ 2t(1 —1)PHL a0® 0 (2.1)

with the given values of y on the contour of this region.
We will seek the function ¢/(r, @) in the form of the following infinite
series:

$(x,0) = 2 a2l “( L sin 210 2.2)

where the co-efficients A, are to be determined, and the function zn(r)

is the integral of the equation

d ©  ds JA—@B+DT
{(1 )“T} § r(b—r)"“z—o @3)

and satisfies the following requirements:

dz,
Zn(n) =0, (F)n:i

The coefficients An have to be found from the conditions:

o]
D) Ay sin 2n6 =

n=]

Q (0<<6<<6,)
0 (6<0< 3 )
We find that
An = 29 gin2 ng,
nn
Accordingly, for the stream function yf(r, 6) we obtain the following

expansion:

o, 0) =22 3 Sn'nd 201D 0 2n8 (2.4)

n=] zn(T’)
Hence we derive the following expression for the velocity potential:

cP(“ve) =C—

Z L ) cos2n8 (2.5)

(1 —1)‘* 2, (Ta)
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8. Let us now calculate the lengths OC and CD of the plate, using
the formulas obtained in the previous subsection.

To calculate the length OC, we observe that along the streamline BC
the following formula is valid:

__ _8in8 8¢
dy V Z2av EC) a0

Integrating both sides of this formula with respect to  from 0 to

1/2 m, after replacing r by r,, we find with the help of formula (2.5)
that

(o]
16Q T (=1 1
0¢ ==~ T Vign (1 — )P, o =1z, (m)

sin® nf, (2.6)

Along the segment CD of the plate, we know that

sm 0 6(p 1
dr, =1
dy V 2at 6=

™

Integrating both sides of this equation with respect to the variable
r fromr, up tor,, we obtain:

_ 40 o (=)™ sinZnB, T'i' T 437 dn
CD= n ¥V 2a 2‘ n? 2, (T2) S dt [(1—-1.-)3 d‘f] £3

n=]1

or, effecting the integration,

CD— 16Q 2‘ —)"  sin?n6,

V___
T V&a - 4n% —1 z,, (T2) {(1_1. )'s a7z V"-'z n("z)]

g} @)

Combining the formula so obtained with formula (2.6) and making use of
the relation

(o0} _ n—1 .
Z _lirﬁ)——_1 sin® nf, = 3= sin® 2.6, (2.8)
n=1
we find that
32Q (— )ﬂ_1 2’y (73)
2l = Vo (1 —)F {8 wsin? L 1 8 + 15 Z Ty m sin?nf, (2.9)

9, Let us calculate the magnitude of the pressure of the stream on the
plate. We shall denote by p, the pressure at infinity in the region of
stationary gas behind the plat.e, and by p, the pressure of the gas in the
stagnant region in front of the plate. 'Ihen the resultant R of the pressure
forces of the gas on the plate 1s

R=2 Spdy———2p._, CD + 2(py— p2) OC (2.10)

CD
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or

R =2 S pdy — 2psl + 2p, OC (P = Pl{ 11::1 ]B+l)
CcD

Along the segment CD of the wetted area of the plate we have

Q 1\ ()" sintaby 4 (%)
* Vax n? 2,(T2) dT (41— )P

n=1

dy = =

Hence we obtain

— 4Q 2 (— Y1 sin? nf, 1’(1_.,)B+li Tz," (1)
gpdy e VZa(t—m)Pt & Z Zp (7a) S Vi 4t (1—n)f de

T

But

Dbt g Tz () 4nt d -
S( 1;-)? F(1--1)" =47;:T(1”’2)d_rz[v"z"(‘2)]+

‘T (mz 1 @+1) V taza (va) — 1 V‘tl 1 —1)

and therefore

—-'r B+ 4Qp T2

Let us now evaluate the expression for R in formula (2.10); we event-
ually obtain the following result for R:

8 1
R = H_Q;%;_;Tz za sm"‘ 1 8 p (2.11)
Accordingly, the problem which we formulated has been solved. Given
the quantities ry, Tos l and Q, we can calculate the angle 6, from formula
(2.9), and the length of the wetted portion of the plate from formula
(2.7); then the magnitude of the pressure of the stream upon the plate is
given by formula (2.11).

10. From the formulas of the foregoing subsection let us recover
Chaplygin’s results for incompressible fluid in the flow pattern under
consideration.

In this case we have

= 3!
B =0, Z, (T) = zn ( ‘l'ln pen >
2, (1) = —1'1‘( i o
n - 2 ot - Tl

Let us evaluate formulas (2.6) and (2.9): we obtain
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32G (—)""!n ¢"sin%n@,
7 n}__l =1 g (2.12)
320 /1 s 1 O (—)""n 44 ¢* .
2l =% (L 2 L 2
= ( 5 ™ 8in? 2 9 +n2|1 T g sin n()o) (2.13)

where

where Py is the stagnation pressure, Py is the pressure at velocity Vl.
By virtue of these formulas we find that for incompressible fluid

B+1 VE —(1 ﬁ)-l oV, L
(1-—-1‘1)9+1 5g PA=\1— 2Po 2P 1= "5 pVs
Hence, formula (2.11) assumes the form:
R = 4QpV4 sin? %eo (2.44)

The collection of formulas (2.12), (2.13) and (2.14) in fact solves
the stipulated problem of jet flow of an incompressible liquid. From these
formulas we can eliminate 60 and obtain the Chaplygin formulas in the
case when the incident stream has infinite width; in that case Q = =, It
is evident from formula (2.13) that, when @ tends to infinity, the angle
00 approaches indefinitely close to zero. Let us investigate the law
governing this approach to the zero limit. For this purpose let us find the
sum of the infinite series in formula (2.13) for small 00. We have

oo}
%( —=)""!n 1+¢*" sin? nfp = — L In cos 6, + %0° 3 ('__.)2_"__11§L22"EQ+
oy Gnt—1 g __gm 8 4 2 dnr—1 0 n?

[ee] T .
. (=)"'n® ¢ sin%nb
2 0
+28, 2 nf =1 | _gon a2

n=y

Hence it follows that for small 0 .

2 e W o on sin? nﬂo={ +2 2 (4n2 - }e’

ey Ant—1q1—g? e e

Now, for small 60 formula (2.13) gives the following result:

mn

=]
2niV, s— § (=" g
B =Trir s’ E; =1 g
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Substituting this expression for 002 in formulas (2.12) and (2.14),
we obtain the Chaplygin results [7]:
641 T 2nplV,y2
= Ve T F LTS R=a¥iyeis

T = 2 e M A i

1 it —1 4 q2ﬂ

Let us consider one more particular case. Let us assume that the region
of zero velocity is absent from the front of the plate; in this case the
number g is equal to zero and formula (2.13) takes the following form:

2 .
2= ?’CVQz ( nsin® L 1 0, 4 ,21(_47———_1-8"‘2"00)

or, after summing the infinite series,
2Q g1 . © 6,
l=—m[nsm2 :‘-60+smeolntg<z—+2—°>]
Using this equation to determine 00 from I, Q and Vz. we obtain from

formula (2.14) the pressure of the stream on the plate:

21!pr22

R = g 720, In [(1 + sin 05)/(1 —sin 0g)]

This expression for R agrees with that obtained by Zhukovskii [6 1,
section 10,

11. Let us now return to the general formulas of subsections 8 and 9
and find the geometrical dimensions and the force R for the case when the
velocities V1 and V, are close to one another.

For the analysis of formulas (2.6) and (2.9) we need to consider the
dependence upon n of the two functions:

1 2, (12)
2, () | 2, (70)

But these functions have been calculated: they are the functions fl(n)
f3(n) (see subsection 3) when A = 1/2 7. By virtue of this we can use the
analyms already presented and write down the expansion of these functions
as regards their principal parts:

1 1 o ; g;m;
2n (T2) = 3, (T2) + 2.2 22 n“+m2

2,7 (1) _ (1) 2 2‘ 2

Zn(<?) Zo (T") j=1 nt 4+ mg + mj?

where

, 1 . z,,’ (t2)
ig; = [6:" (t2)/on ]n—iMj , G = [————azn )an ]ﬂ_{m’ (2.15)
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Let us substitute these expansions in formulas (2.6) and (2.9), ob-
taining
16011

oC = Vé_d—‘tl(i _‘n)g X

1 S &G 1 a1 & g shimb,
X {[420 G T é"zl m, 1 +_—4m? ] sin? 2—‘90 + jz__:l 1—_}_-4—,7%— shm; (2.16)

_ 320
2= Vmﬂ——n)ﬂx
b+ 3 S ] b 2 e @10

3==1"""j

If the velocities V, and V., are close to one another, then these two
last formulas are appreciably simplified. These simplifications arise by
virtue of the fact that, for values r, and r, differing only slightly
from one another, the numbers m; are determined by the following formula
(see subsection 5):
™

m,-=v

I (==t %2 £3,...)

which shows that all the m;, starting from m, and m_,, are very large for
small v’. Hence it follows that the two last infinite sums on the right-
hand sides of formulas (2.16) and (2.17) can be neglected. However, by
virtue of the formulas at the end of subsection 5, the sums

£ m; 1 -i—4mj2 ’ = m; 1+4m'J2,

take the following values respectively:

VIi—@ 0w |2 L[ VI=@BFDHn P
48[ it 2J {ta — 1), .ﬁ[ 7t 2 (tg — 1)

if we retain only the first terms in the expansions in powers of the
small differencer, —r .

Hence, from formula (2.17) we obtain

_ 4Qr: 8in%1/,0,
(1 —7)PY 2, »—m

(2.18)

Let us now take formula (2.11) and substitute therein for sin? 1/2 6,
its value from the last formula; we then obtain an expression for the
pressure of the stream on the plate for values of r, andr, which differ
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only slightly:
2 1
R=2E+D 6, —yp,

We observe that, by retaining only the first power of the difference

r,~r1,, we cannot distinguish between the lengths OCand L.

Formula (2.18) can be used to determine the angle 6, of separation of
the jets to infinity,

III. Flow of a gas out of a vessel

12, The partial differential equation, which is satisfied by the stream
function y{@, r) in plane-parallel potential motion of a gas, has the
following form:

9 LA A 4 1—@2B+1)= ?ﬂ)=
ot {(1—-:)‘3 61} 0 (3.1)

2t (1 —7)PTL 502

In order to construct solutions of problems on jet flows of a gas,
Chaplygin found a number of particular solutions of equation (3.1). How-
ever, for the solution of the problems we mean to consider in this

section, it 1s necessary to find other particular solutions of the same
equation (3.1),

We will seek particular solutions of equation (3.1) expressible in the
form of a product of two functions ® () and T(r ), each depending upon
only one argument. Substituting the product ® (6) T(r) in place of the
function ¢ in equation (3.1) gives the following result:

1 d 2t dT}, 1—(@2B+ 1)~ _1 a0
d—‘r{( } 2t (1 — )P+ 6 do?

T 1—q)f dt =

Let us equate the common value of the right and left-hand sides of
this equation to a certain negative number - n?; then, in order to deter-
mine the unknown functions ® and 7, we get the following equations:

d® .o _ df 2t dT s 14—+ ~n_
ar 1t 8 =0, dt {(1 —)P d'r} n 2t (1 — r)ft+? r=0 (3.2)

The first equation can be integrated in hyperbolic functions, and its
general integral can be written thus:

8= Achnd 4 Bshnb (3.3)

Integration of the second equation can be achieved in temms of the
hypergeometric series. Let us set

T = «'AmS (1)

then for the determination of the function S(r) we get the following
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equation, due to Gauss:
1= f )+ E—1—n)1 S 4 LiBn(l+ ) S =0

The solution of this equation is the hypergeometric series F(a, b, c;
r) with the parameters a, b, ¢ defined by the formulas

a+b=ni—B, ab=—1ipn(1+n), c=1+n (3.4)
Accordingly, the second equation (3.3) has the particular solution

T = G—)vmi F(a, b, ¢; 1)

Here r, is an arbitrary constant number.

Proceeding in a similar manner, we find that equation (3.2) also has
a particular solution of the following form:

T — (E“:)”’"iF(a, B. ¢ 1)

T/

where the parameters a, b, ¢ of the new hypergeometric series are deter-
mined by the equations

a+b=--ni—p, ab=LiPn(1—ni), c=1—ni (3.5)

By means of the particular solutions T and T, let us now form new
particular solutions T° and T°’ of equation (3.2), setting

T'=L(T+1), " =L —T)

These particular solutions can be expressed in the following formm:
T' = Mz, n)cos (é—n]n:—:’—)—N(t, n) sin (;—nln?) (3.6)
T = M (z, n)sin(i—nln:l) + N (=, n)cos(;—nln-:—’)

where the functions M(r, n) and N(r, n) are two functions of the variables
r and the parameter n, expressed by the following series:

M n)=14pn)c-+tp(n)x>+ ...
3.7
N, n)=[qg(n)t+gs ()2 +...1n
where Pys"Pyr vevs 445 Gy ... are rational functions of the parameter n,
containing in their expressions only even powers of this parameter.

Let us write down the expressions of the first few of these functions,
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We have
pi(n) =0, ‘Il(")":—l;'p
2 (1 —1/,Bn? 2 (341)—n? (14Y/
pe(n) = -"ﬁ(,,z—fz)") B ga(m) =28 +2)(n2n+(4) 23)?‘

................

13. Let us consider a vessel bounded by two parallel walls, extending
in one direction to infinity and supplied with a nozzle, formed by two
small and equal straight segments of wall, inclined to the centre line of
the vessel and joined to the free ends of the parallel walls mentioned
above (Fig. 6). From this vessel, gas issues under pressure in the form
of a jet into free space. Our problem consists of constructing the stream
function of this gas flow*.

F ¥=q g _g_,
T,
L w0 L’W
A & g
Fig. 6.

Let us assume that the value of the stream function i along the line
of symmetry FE of the stream is ¢ > 0, and along the compound boundary
ABCD, including the free surface of the jet CD, is zero. Let us further
assume that in the distant part of the vessel, from which the gas is
coming, the value of the variable r is given and is equal to 7 ; let us

assume, moreover, that at the points of the free surface of the jet the

variable r has the value r,< 7.

At the point B the velocity of the gas is equal to zero, and this
¢ircumstance introduces a well-known complication into the given problem.
In order to avoid this difficulty we will first solve a somewhat altered
problem, obtained by replacing the critical point of zero velocity by a
region of stagnant gas B’BB”, along the curvilinear boundary B’B” of
which the variable r has the small value r”.

5.V, Fal’kovich solved the problem considered here by dividing the
region of flow into two parts; in one part, containing the jet and the
point of zero velocity, the stream function is given by a series of
functions zn(r); in the other part, containing the remainder of the

pipe, the stream function is expressed as a series, the general term

of which contains the second solution of the hypergeometric equation [5].
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Let us now consider the range of variation of the variables in the

plane of 6 and r corresponding to the gas flow under consideration
(Fig. 7). This region is the rectangle AB°B*CDEF,

2

fﬂ w=0 ¢
£

v=q
£

] =J

T 4 @
w=0

rl B”
I'd =f

¥ L8

A
Fig. 7.

bounded by the straight linesr =r”, 6 =A, 7 =r,, 6 =0; here A is the
angle of inclination of the wall segment BC to the axis O0X. The required
function ¢¥(0, r) has to satisfy equation (3.1) and the following boundary
conditions on the sides of the rectangle under consideration

$=0 whent=r1, =0 when8=%x, ¢=0whent=r1,
=0 when8=0and v <v< 1y p=¢ when9=0and <<,

In order to find the function ¢{@, r), let us consider this particular
solution of equation (3.1):

$n = AxTn(t)shn(x —8)
If we subject the function T, (r) to the conditions
T,(v)y=0. To(ty) =0 (3.8)
then the function ¢y will satisfy all the boundary conditions imposed
upon the function (/1’(0, r), apart from the condition on the side § = 0. In

order to satisfy this condition too, let us form a series with indeter-
minate coefficients 4 :

GO, t) = 2 ApTrn(z)shn(h —6) (3.9)

suming over all the fundamental numbers n of the equation (3.2) which
satisfy the boundary conditions (3.8).

Two fundamental functions T, (r) and T, (r) of the equation, correspond-
ing to two different fundamental numbers n and m, satisfy the integral
relation:

¢ =@+ DT 7 g 0
S 2t (1 — Tt n () L (1) e =

Y

Let us assume, in addition, that
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(A=@B+DT 0 oy 3.10
S, perp A (5-19)
On the basis of these conditions of orthogonality and generalised
normality of the functions T, (r), we can determine the coefficients A of
the series (3.9). Let us set # = 0 in this series and, multiplying both
sides by

1— (28 + 1)
2t (1 — 7)8tL

let us integrate the result with respect tor fromr’ to r,. Taking into
account the boundary conditions imposed upon the function vi(@, r), we
find that

-

dy=—E (= AR 7 (e
sh n2. 2t(1—7)FTl

1

Making use of the differential equation (3.2), we can effect the
quadrature and in this way obtain for A the following expression:

q 2t 4T, T
" ntshmn (1—7)f dr .

Accordingly, the series which is the solution of this preliminary
problem can be written thus:
2v  dT,"shn(>—0)
¢0 )=4q Z[(T__)BF] Tshan 1n(7) (3.11)

T

Using this series, we can calculate all the elements determining the
motion of the gas.

14. In order to solve the problem originally formulated, when instead
of the stagnation region BB’B” there is a single stagnation point B, we
have to let the number r* in formula (3.11) tend to zero.To achieve this
passage to the limit, we have to record certain intermediate propositions.

Let us first take equation (3.2) and transform it to a new form; in
place of the independent variable r and the function T(r) let us introduce
the new independent variable z and the new unknown function u(z), by

setting
Ts

—T

T

We then obtain the following differential equation:
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a2 BEB+1)T 4—2(B+2T—BEB+1)T
s = g jr=0 (42

We observe that for subsonic motion of the gas the numerator of the
second term in the square brackets is positive.

In accordance with the boundary conditions (3.8) we have to consider
those integrals of this equation which satisfy the following conditions:

un (0) =0, un(z’) =0 (3.13)

where the zero value of the variable 2 corresponds to r,, and the value

z” corresponds to the value r“ of the variable r.

From the fornula determining z from r it follows that, as r’ tends to
zero, the quantity z° will tend to infinity, and accordingly the second
boundary condition (3.13) has to be satisfied for very large values of
the independent variable z. Using the theory of asymptotic representations
of integrals of linear differential equations, it is possible to give
approximate values for the fundamental numbers of equation (3.12), corres-
ponding to large values of the quantity z”; we have

nj="_1 (G=1.23..) (3.14)

Hence we see that the difference, between two successive fundamental
numbers n appearing in the series (3.11), is equal to #/z° and conse-
quently tends to zero as z’ tends to infinity. By virtue of this fact we
can assume that, as z° » oo, the sum (3.11) will tend to a certain definite
integral. In order to construct this integral we shall need to consider
in somewhat greater detail the general term of series (3.11),

The function T, (r), appearing in the general temm of this series, can
be represented in"terms of particular solutions (3.6) of the equation
(3.3) in the following way:

Ta(®) = CalTw' () T" (x) — Tw” (1) T’ ()]

where the coefficient C, has to be determined from the condition (3.10).
Let us present this condxuon in a new form, introducing in place of the
variable of integration r the new variable o, by putting

We obtain

u: _ —2a
1(1_1.2(1225‘4;"1))911 (Ta (o) do =1 (3-19)
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We observe that the expressions for the functions T * (r) and Tr> tr),
in terms of the new variable o, are
T'=[14 pi(n)te—2+...]cosns —ng,(n)tee~?+. . .]sinne
T"=[14 pi(n) e~ +...]sinne + n[q,(n)te~2° .. .] cos no

Hence we obtain
Tn (o) =Cn{[T4 (%) + a1~ 4 ae™° 4. . .]sinns —
— [T4" (x2) + bye™° 4 be~% 4- . . .] cos na}

where Bys Gyy veny b1' by, +.. are completely determined coefficients de-
pending on the number n. We can now, moreover, write,

(3.16)
[Tn(3))?=Cxt {;‘ [M? (15, n) + N2 (ty, N)] + ke 4 kpe~* +. .. +
+ (g + Le2 .. .)cos2ne + (my + me—29 4. . .)sin 2nc}

where ki' kz, e, lo, li' lz, cees My, My, My, ... ATE certain numbers
depending on the parameter n.

We can also write down the following expansion:

1 — 1y (28 + 1)
1 — 2% Pt1

=14 A Ao | .

Now, the condition (3.15) can be written thus:

S =L (M (5, m) + N2 (s, m)) S ds + ) B S e—tiods +
n 0 =1 (3.17)

o

(=] ° (=)
+ 3 €5 e2io cos 2noda + 3 D; {esie sin 2na do
=0 =0

where Bj' Cj' Dj are completely determined numbers. We have

-] L

' o 1 g’
Sdc:c, Se 2J"dc:=7l.(l——-e 2jo’)
¢ [

g .
—2j6’ . , . B .
: e (n sin 2ns’ —j cos 2ne’) + §
—2jo —_—
S e~%° cos 2nads = S GEF )
o

n— e~21% (j sin 2ne’ + n cos 2na’)

__2j° H —
e~%i° sin 2ne da T )

Se——230q

From these formulas it follows that the relation (3.17), from which C”
is to be determined, can be rewritten thus:
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1 T ’ 14
EF=;—[M2(12, n) + N2(ty, n)] o’ {1 + L(s")}
where the functions L(¢’) are certain functions of ¢’ which tend to zero
as 0’ tends to infinity.

Accordingly, the functions T, (r) appearing in the series (3.11) can be
written thus:

- 8 (1,n) 2t
O = Vi@t @ V 7VITLe)

where
(e, ) =T ()T (x) — T () Ty’ ()

Now the series (3.11), which was the solution of the preliminary
problem, can be written so:

2q 21y d%(m1, n) 21y dd (12, n)
$(9
¢ )= Z {(1 —)f du T (4 — )P dty
(3.18)
shn(xn—0) d(t, n) 1

n:shnh  M?(tz, n)+ N%(ty,n)1 + L (o)

Here it is necessary to make one important remark concerning the nota-
tion: the function 6¢r, n) depends on the quantitiesr, andr,, but when
we write dG(ri, n)/dr1 and d0(r2, n)/dr we mean to signify the values of
the derivative d@(r, n)/dr evaluated at r and T, respectively; accord-
ingly, r, and r,, which appear in the function 0(r, n) as parameters, are
not subject to éifferentiat.ion.

Between the numbers r*, z’, o’ there exist the following relations
g

Ts -
z'=g‘2’_:‘/1—<2ﬁ+1>r, o = Lip &
t—n 2 T

Y

From the first relation we obtain

z’=;—l -————(B+1 Y(rg—1')+..
Hence it follows that for small r’ we can take z° = o”.

By virtue of this fact, the formula (3.18) for the stream function can
be rewritten in a new form; taking into account the connection (3.14)

between nj and z’, we have

k17
An:ZT:

aja

Accordingly, we obtain
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ks 27, d9(t1, n) 2t d9(1e, n)lshn(x— 6)
$0, )= 2 {(1 ) dn,  (1—1)®  dm } n?sh na
% 9 (x, n) An

M2 (ty, n)+ N2(1y, n) 1+ L(s)

Let us now pass to the limit, when the number r’ tends to zero. In the
limit we find the following expression for y(6, r):

_2q 27, d9 (7, n)_ 27 dd (T2, n)
$(0, )= S {(1—11)9 dy A—1)f  dma }X

shn(x —6) 9(z, n)dn
n®shnh  M?2(1;, n) + N2(1o, n) (3.19)

By means of this fornula we can find the contraction of the jet and
the pressure of the gas stream on the sides of the nozzle,

Let us turn to Fig. 6 and find the connection between the ordinates
of the points C and D; let us denote these ordinates by — H and - h,
respectively,

We have the following general forrula of the Chaplygin method:
di=t(dp+ifea )
V ( ¢+itdd

where p, is the density at that point of the gas stream where the velo-
city of the gas is equal to zero.

Let us apply this formula to the arc CD of the streamline ¢y = 0; we
obtain

el® 21, oY
= —=-——\7 e
dz ]/ 20t (1— 12)B <a1 >1'—r, d

Hence

1 2t Y
dy = — . <2 (%Y .
) VZa'rg A — 12)3 <a,c >1.'=1.', sin 0 d6

and consequently

A
1 27 ) .
Hh=_— _—___ < \(%

& Viat (1 — )P §<61) sin 0 df

T=Ty

Substituting in the right-hand side of this formula for the function
(6, r) its expression in the form of the integral (3.19) and carrying
out the calculation, we arrive at the following result:
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H—h= 29 VY 2ats ¢ 2ty d8 (7, n) 2t d9 (T2, n)
A= s& 5 dnu CR X
T =)y (1) 1 (1—m) 2
sh nA — nsin nA 1 dd

(&T)‘r, dn

X n® (1 4 nt)shnh M2(1y, n) + Ni(ty, n)

(3.20)

15, Let us apply these formulas to the case of the flow of an incom-
pressible liquid.

Ih this particular case B = 0 and equation (3.2) has the following
integrals:

T’=cos<LnlnTi). T'=sin(.1_nln1_’)
2 < 2 T

and therefore
! T
8 (x, n) =sin K;— nln %)

21y a9 (n, n) 279 d9 (tq, 1) —n |1 — cos (L ln 12_)
(1 — )P dty (1 —1)° dts 2 T3

Let us now evaluate formula (3.19); we obtain

[ee]
2g (1 —cospn shn(r—8
¢(0,1)=Tq8 coser :énx )in@nln%)dn 3.21)
0
where
v
p=—;-ln:—21=lnv—z

and V1 is the velocity of the liquid in the remote parts of the vessel,
whilst Vé is the velocity of the liquid in the jet.

From formula (3.21) we easily find the expression for the complex flow
function w(o) of the complex variable o, introduced by the formula

Vv
s=Inj +i(®—2
We obtain

[oo]
2q ¢ 1 —cosun coson
n sh An

w (o) = dn

T
0

Hence we find, on carrying out the quadrature, that

(¢ —o)
ﬁ—?shysch PRy ch T }

(3.22)

dw q ne 1 no 7 (b + o)

From these formulas we find the relation between H and h, thus:
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He : S i‘f-) 5in 620
Van, smef{8—2)

Substituting herein the expression (3.22) for dw/do, and taking o =
i(G - A), we obtain

X

H—h 1 sin? (=0 / 23)

R =TS““°°°321(1+W) 4
0

This integral can be calculated when A = 1/2 », and we obtain

H—h 2 1
5= —shparctg(shp

If in place of g we introduce the new parameter y, by setting

- V1
tgy = ¢ "=f,-=—

then we put the foregoing formulas -into the following form:
H 4 v
"= 1+ 3 th 2y
Let us introduce here in place of h the quantity 2L, equal to the
width of the vessel; we then obtain the formula given by Zhukovskii:

H 4 v
T = thy (1 +5 W)
From this formula we can, given H and L, determine the number y, and

hence the velocity of flow in the jet, if the velocity of the liquid in
the remote parts of the vessel is known,

16. The problem of the flow of gas out of a vessel, which was solved
in the foregoing subsection, is equivalent to the problem of the motion
of gas through a grating consisting of bars of equal size. Let us suppose
that A = 1/2 7, then we have a segment of the flow past a regular grating
with jet formation (Fig. 8).

Along a bar of the grating we have

dy = — 1—@B+1)r 3y dr
y 2t(1 —7)Pft1 0 yogr

In order to determine the pressure P, acting on each bar of the
grating, we use the formula:

P=py(1 —)*H
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Fig. 8.

Hence we obtain for P the following formula:
C1—@B+ D= @b i

DP=_— i
2p0> 2t }/Zm a9 | Q=mtfyme
Substituting here in place of (@, r) the expression (3.19), we obtain
4 O 2 d8 (11, n) 2 d9 (7s, n)
— _3Pe? T1 T, R Ta Tg, 1
P= hmg {(1 —)®  dn (1 —1)f dm } X
1 dn C1—@B+1)7
X Weh aen M (e, m) T VA (m, n>§, Ve D
But
"1_—_@&9 - 1 1_ ds(-rz n
S P VZ?‘ (T’ n) dt = (n“ + 1) Via- { V‘t?-( TS)
Nl AR ET: E L
—2V7(1— o 2 3‘(1,71)}
Consequently,
_ 8pygmu(l—m) d9 (tq, n)
P=— 1: ___R_S {P (Tlv T2s n)}T X
1 dn

X n(n®+1)shl/.mn M2(tz, n) + N2(13, n) +

4pog dS(T n) 14+ @+N7 '
+ﬂva1u_ng{21/< (1— - 3(1:,71)})(

1 dn
X T (v, 72 n)n(rﬂ +1)sh1/ann M2 (tz, n) + N? (12, n) (3.23)

where
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2ty dd(m,n) 2ty d(%s, )
. .,1)9 dty 4 —)P dts

r (11’ 12) n) =

In equation (3.23) let us effect the passage to the limit; for small
r’ we have

T'=cos(%nln1:—), T'-—-sin(-l—nln"i)
3(1’,n)=sin(—;—nln‘:i,), -‘%’i— e oos(—nln )

Hence the second term of formula (3.23) can be rewritten thus:

(=)
4pyg lim S { —cos(YanlInt:/T1) %

n]/2a1,=00 (n?+ 1)shljpnn

1+ 4+ 1 T\ 1—=x 1 Ty
X{——__Vr—' sm(2 nln 1,) n——V‘r—’ cos(2 nin >}dn (3.24)

Let us calculate the definite integral

— oo m
142 +1)7 _ i __ym ch2ma—1 /<" 1—
——-———zv? [n(cha 1) VTz +m2=1( )m______ms_‘/‘ n) ]+_—2V7 X

xrens—n) T2 3 crnBET(Z)] (<= VD)

Hence it is clear that the quantity (3.24) has the following simple

value:
4pg  _m i/ T 1‘/ E)
V2 2V ( T T3

Let us now turn to fornula (3.23); we can naw recast this formula in
the following final fomm:

_ 2poq
~ I/ ‘/ (3.25)

_8p_,,q‘rz(1—'rz) SI‘( < n)dS(‘tz, n) dn
T Vit b dt, n(n2+1) shY/smn M2 (ts, n) + N2 (13, )

For incompressible fluid this integral can be evaluated, and we then
obtain the following formula for the pressure of the stream on the bar
of the grating:

29 2p |14 1
P=gy-(1~V) {ﬁ(v1 +Vy)arctg 7‘2 +5eVi(Va—Vy)— pl}

where p, and p, are the pressures in the stream in front of the grating
and in the jet, respectively. If we deduct from this value the back-
pressure, acting on the bar from the side of the stagnant fluid and equal
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to 2(L - H)pz, then we obtain Zhukovskii’s formula:

1

17, The problem of the flow of incompressible fluid out of a vessel
into a pipe was first solved by Zhukovskii; we intend to solve this same
problem for a gas. The configuration of the problem is illustrated in
Fig. 9.

4
4!
B \1'.20: ﬂ'
J £
T z
8 ¢ 7
A

Fig. 9.

Gas from an infinite vessel, in the remote parts of which it is at
rest, issues under pressure from the orifice BB’, forms a short length
of free jet bounded by BC and B°C”, and then enters an infinitely long
pipe CC’DD’.

Let us assume that along the free surfaces Chaplygin’s variable r has
the value 7,, and in the remote parts of the pipe the variable 7 is equal
tor, < 7,. Let us assume that the value of stream function (6, r) along
the iine iBCD is zero, and along the line CE 1is equal to ¢ > 0.

Let us consider in place of the function y{@, r) the new solution of
equation (3.1) - the function ¥(@, 7), connected with y{(6, r) by the
formula

2
w(0,t)=1¢(@,1) +-n—q(9 -—-;—1:)
The new function ¥(6, r) will satisfy the boundary conditions:

¥=0 for9=;—1t&0<1<12
=?_q.(6_1_1-;> for T=T,8 06 <-:)—1‘!

T 2

¥ (9 {—q when 1, <<t<t; and 6=0
6,7 = 0 when0 <t<1, and 6=0

The required function ¥(4, r) can be represented in the form of a sum
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of two functions ¥, (8, r) and v, (@, r), defined by the formulas:

2 S Zn(®) sin2n8
18, 7)) =— ?Ex 2,(ts) n

0

. 290 2 dd (zy, n)
B0 =— 2T S

0
__2ts  d¥(te, m)\sha(Yem—0)  8(r, n)dn
(1 —1)B dTs } n?shljemn  M?(ts, n) + N2 (13, n)

This last function can be obtained from formula (3.19) by replacing q
by - ¢ and setting A equal to 1/2 =,

18, Let us assume that gas issues from the open end of a pipe, at the
far end of which the gas velocity is V,; on issuing from the pipe, the
gas impinges on a plane C’BC and flows along it, forming free streamlines
ED and E’D’ (Fig. 10). The velocity of flow along these lines is constant

olle
7|
£ £) |p=?
T, w=q
AL e
F’
Fig. 10.

and equal to V, > V,. The construction of the stream function for the
gas flow can be effected in this case also by using formla (3.19).

Applying Chaplygin’s function z, (r), as in the previous problem, we
can write down an expression for the stream function in the following
form:

[}
_ 4g N %en (%) sin2n6
¢, %)= ‘,;“nz:l PRy R
+ 2q §°{ 27y dd(my, n) . 2ty d9 (e, n) } shn (Y/an —8) 9 (r, n)dn

. ; (t—x)® dn (—m)Bf 4T n?shijamn M2 (ty, n) 4+ N?(1e,n)

The sign * (prime) in the sum indicates that the index of summation n
can assume only odd values.
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